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Abstract
The correlations in the spectra of quantum systems are intimately related to
correlations which are of genuine classical origin, and which appear in the
spectra of actions of the classical periodic orbits of the corresponding classical
systems. We review this duality and the semiclassical theory which brings it
about. The conjecture that the quantum spectral statistics are described in terms
of random matrix theory, leads to the proposition that the classical two-point
correlation function is also given in terms of a universal function. We study
in detail the spectrum of actions of the Baker map, and use it to illustrate the
steps needed to reveal the classical correlations, their origin and their relation
to symbolic dynamics.

PACS numbers: 03.65.Sq, 05.45.Mt

1. Introduction

The interest in the correlation between classical periodic orbits, and in particular, in the
spectrum of their actions, emerges from the attempts to provide a semiclassical proof of the
universality of spectral correlations of quantum chaotic systems (‘the BGS conjecture’ [1]).
Action correlations were first discussed by Argaman et al [2] where the universality of action
correlations and their relation to random matrix theory (RMT) were studied for a few chaotic
systems. Various aspects of the subject were investigated later [3, 4, 6–8, 10, 15]. This
culminated recently in the work of Sieber and Richter [12], who identified pairs of correlated
trajectories, whose contribution to the spectral form factor for systems with time reversal
symmetry is identical to the next-to-leading order term in the form factor predicted by RMT
(see also [13, 14]).

The purpose of this paper is twofold. First, to review the semiclassical context where
action correlations and their expected universal features arise in a natural way [10, 15]. This
will be done in the main body of the present section, where also the connection with RMT will
be made explicit. Second, to test the general semiclassical arguments on action correlations
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for a paradigm chaotic dynamical system—the Baker map. This system was investigated
previously by a number of groups, [2, 3, 6, 8], who demonstrated numerically the existence
of the expected correlations. Here, we develop another approach for the analysis of the action
spectrum, where we try to systematically assess the way the periodic orbits and their actions
can be partitioned into families which are dynamically related. One aspect of this approach
is studied by casting the problem as an Ising model (in one dimension and with a long range,
yet exponentially decaying interaction). Moreover, we show several features of the action
correlations which escaped the attention of previous works, and in particular, we analyse the
correlations in terms of the symbolic dynamics. We hope that this insight will pave the way
to a more complete understanding of the universal features of action correlations in general.

1.1. Action correlations and the semiclassical theory of spectral statistics

Consider a finite, two-dimensional domain A and an area preserving map

M : γ ′ = M(γ ) γ ′, γ ∈ A. (1)

Any area preserving map can be expressed implicitly through a generating function [16]. Let
γ = (x, y) and γ ′ = (x ′, y ′). The generating function F1(x

′, x) defines the map through the
relations

y = −∂F1(x
′, x)

∂x
y ′ = ∂F1(x

′, x)

∂x ′ (2)

where x ′ is to be expressed in terms of (x, y) by solving the first equation, and y ′ is given
explicitly using the second equation. Twist maps are maps for which the first equation above
has a unique solution for any (x, y) = γ ∈ A. From now on, we shall assume M to be a
hyperbolic twist map.

Periodic points of period n are solutions of the equation γ = Mn(γ ). The corresponding
n-periodic orbit is obtained by iterating the map: γ

(a)

0 , γ
(a)

1 = M
(
γ

(a)

0

)
, . . . , γ

(a)

n−1 =
Mn−1

(
γ

(a)

0

)
. The action assigned to a periodic orbit is

fa =
n∑

j=1

F1
(
x

(a)
j , x

(a)
j−1

)
x

(a)
0 = x(a)

n . (3)

The number of n-periodic orbits Nn increases exponentially with n. The object of our
investigations is the set of actions {fa}Nn

a=1, in the limit n → ∞.
Under quite general conditions, one can show that the mean action 〈f 〉n and the variance

varf (n) are both proportional to n. Moreover, the actions of n-periodic orbits are bounded
within an interval which grows algebraically with n. However, since their number grows
exponentially with n, one expects exponentially small spacings between successive actions.
We shall explain now why the pair correlations of action are expected to be universal, and
determined by RMT. To this end we should address the quantum analogue of the map, in the
semiclassical limit.

The quantum analogue of the classical map is a unitary evolution operator UN which acts
on an N-dimensional Hilbert space, with

N =
[‖A‖

2πh̄

]
(4)

where [·] stands for the integer value and ‖A‖ is the area of A.
The spectrum of UN consists of N unimodular complex numbers eiθl(N), θl(N) ∈ [0, 2π).

Ample numerical evidence supports the conjecture that the spectral statistics of UN is well
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reproduced by the predictions of RMT. The quantum spectral density is denoted by

dqm(θ; N) =
N∑

l=1

δ(θ − θl(N)). (5)

In the semiclassical approximation,

〈x ′|UN |x〉 =
(

1

2πh̄i

) 1
2
(

∂2F1(x
′, x)

∂x ′∂x

) 1
2

eiF1(x
′,x)/h̄. (6)

Here, x is a discrete index which labels the eigenstates of the position operator and F1(x
′, x) is

the classical generating function. A detailed discussion of the semiclassical evolution operator
and its properties can be found in [5].

The semiclassical approximation (6) yields∫ 2π

0
dθ einθdqm(θ; N) = Tr Un

N ≈
∑
a∈Pn

A(n)
a eifa/h̄+i π

2 raµa (7)

where Pn is the set of n-periodic orbits. A(n)
a are the stability amplitudes,

A(n)
a = n

ra

∣∣ det
(
I − T

ra
a

)∣∣ 1
2

. (8)

Here, ra stands for the repetition number if the periodic orbit is a repetition of a primitive
na-periodic orbit

(
na = n

ra

)
. Ta is the monodromy matrix and µa is the Maslov index for the

primitive orbit.
At this point, we introduce the classical density of actions of n-periodic orbits,

dcl(f ; n) =
∑
a∈Pn

A(n)
a ei π

2 raµa δ(f − fa(n)) (9)

and we obtain

Tr Un
N ≈

∫
df eif/h̄dcl(f ; n). (10)

Using (4), and measuring the actions in units of the phase space area s = f/‖A‖, we get the
relation between the quantum and the classical densities:∫ 2π

0
dθ eiνθ dqm(θ; N)

∣∣∣∣
ν=n

≈
∫

ds eiksdcl(s; n)

∣∣∣∣
k=2πN

. (11)

This equation expresses the quantum–classical duality. It relates two densities which are very
different: the quantum density gives a unit weight to all the eigenphases on the unit circle,while
in the classical density the actions are weighted by the stability amplitudes, and are assigned
with a ‘charge’ ±1,±i depending on the Maslov index. The duality relation is expressed via
a Fourier transform which involves both the variables and the parameters which specify the
quantum and the classical distributions. On the quantum side, N is a parameter which specifies
the value of h̄, while n is the value of the variable conjugate to θ . On the classical side, n is
a parameter which specifies the period of the ensemble of orbits under consideration, while
N determines the value of k—the variable conjugate to s. In what follows, we shall always
reserve the first position for the spectral variable or its conjugate, while the second position is
reserved for the parameter which specifies the system.

We shall focus our attention on the spectral form factors, which are the Fourier transforms
of the pair correlation functions. The quantum and the classical form factors are given
explicitly as

Kqm(ν; N) = 1

N

N∑
l,l′=1

eiν(θl−θl′ ) = 1

N

N∑
l,l′=1

e2π iτ(θl−θl′ )d̄N (12)
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where τ = ν
N

, and d̄N = N
2π

is the mean density and ν must be an integer since dqm is a
periodic function. The classical form factor is

Kcl(k; n) =
Nn∑

a,a′=1

A(n)
a A

(n)
a′ ei π

2 (raµa−ra′µa′ ) eik(sa−sa′ ). (13)

It follows from (11) that the quantum and the classical two-point form factors are related by

Kqm(ν = n; N) ≈ 1

N
Kcl(k = 2πN; n). (14)

Hence, the quantum spectral correlations are reflected in the classical spectrum, and vice
versa. This equation expresses the important semiclassical result that the quantum form factor
is obtained from the classical one by interrogating the spectrum of action differences on the
scale of N−1 ∼ h̄.

Equation (14) has to be understood in the sense of distributions, since the form factors,
as defined above, are the Fourier transforms of a sum of δ functions. Indeed, the form factors
computed for a given system fluctuate, and do not converge to a limit when N → ∞. The
appropriate way to overcome this difficulty in the present context is to apply a smoothing
procedure, which enables the extraction of well-defined limit distributions.

Starting with the quantum form factor, we adopt spectral averaging which is based on
the assumption of ‘spectral ergodicity’. We order the spectrum so that θl � θl+1, and partition
it to Ng subsets σg , each consisting of N̂ = N

Ng
subsequent phases. Neglecting correlations

between phases in different subsets, we rewrite (12) as

Kqm(τ ; N) ≈ 1

Ng

Ng∑
g=1

1

N̂

∑
l,l′∈σg

ei2πτ(θl−θl′ )d̄N

= 1

Ng

Ng∑
g=1

K(g)
qm(τ ; N̂). (15)

K
(g)
qm(τ ; N̂) is the form factor for the spectrum obtained by multiplying all θl ∈ σg by N

N̂
so

that they cover the entire circle uniformly. Taking now the limit N → ∞ at a constant τ ,
with Ng ≈ N̂ ≈ √

N , it is expected that Kqm(τ ; N), which is expressed now as an average
over the ensemble of the partial form factors, converges to a limit distribution Kqm(τ) which
reproduces the prediction of RMT for the appropriate ensemble. This procedure is justified by
the fact that in the quantum spectrum, the correlation range is of the order of a mean spectral
spacing. Hence, the elimination of the correlations between different sets in (15) introduces a
small error, which vanishes in the large N limit.

A different smoothing procedure is required for the discussion of the classical spectrum.
As will be shown in the following, the classical correlation length is of the order of the inverse
of n which exceeds by far the mean spacing which is exponentially small in n. A spectral
smoothing should therefore rely on a different partitioning of the period orbits, such that the
relevant correlations are preserved within a subset, while members of different subsets are
statistically uncorrelated. One of the main problems in dealing with the classical correlations
is the proper definition of such subsets [7]. The smoothing of the classical spectra is by far
more important since the number of actions increases exponentially with n.

If we denote the results of the quantum and the classical smoothing procedures by 〈·〉, we
obtain from (14) the relation which is basic to the present approach,

〈Kqm(τ ; N)〉 ≈ 1

N

〈
Kcl

(
2π

n

τ
; n
)〉

τ = n

N
. (16)
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Assuming that 〈Kqm(n; N)〉 follows the RMT predictions, namely, 〈Kqm(n; N)〉 = KRMT(τ =
n/N), we find that the classical spectra of chaotic systems must display universal pair
correlations which can be derived from RMT using relation (16). In particular, since for
large N, 〈Kqm(τ ; N)〉 is a function of τ only, we derive two immediate predictions for〈
Kcl

(
2π n

τ
; n
)〉

:

(i)
〈
Kcl

(
2π n

τ
; n
)〉

is proportional to n, since the right-hand side of (16) must depend on N
only through the ratio n

N
. It is convenient to define

Kn(k) = 1

n
〈Kcl(k; n)〉 (17)

where the proportionality of
〈
Kcl

(
2π n

τ
; n
)〉

to n is made explicit.
(ii) Kn(k) depends on k only through the scaled variable k

n
,

Kn(k) = k

2πn
KRMT

(
2πn

k

)
. (18)

Since k is the parameter conjugate to the action differences, it follows that the correlation length
of the action spectrum is proportional to 1

n
. Moreover, (18) shows that the classical correlations

of actions corresponding to different periods are identical up to a scaling, and universal, since
they are expressed in terms of a system-independent function. These predictions pertain
exclusively to classical properties and, once they are derived within classical mechanics, the
road would be cleared for a semiclassical derivation of the BGS conjecture.

The validity of (i) in the limit τ → 0 was first shown by Berry [21]. In the present context,
it follows from the fact that the actions are discrete variables, and therefore for sufficiently
large N the only correlations are the diagonal ones. Hence, for k → ∞,

〈Kcl(k; n)〉 →
∑

a

∣∣gaA
(n)
a

∣∣2 ≈ n〈g〉 (19)

where ga is the number of different orbits which share the same action (mostly due to symmetry)
and the summation is now restricted to trajectories with different actions. The equality on the
right-hand side is derived by using the ergodic sum-rule [23] and denoting by 〈g〉 the average
value of the ga . Since 〈g〉 takes the value 1 for systems without time reversal symmetry, and
2 for systems which are symmetric under time reversal, the leading terms in the RMT results
for the CUE and COE are indeed reproduced.

To derive the quantum form factor in a consistent semiclassical way, one has to consider
the classical form factor for a fixed n, and change k (or N ) so that an interval of τ values
is scanned. However, to have meaningful pair correlations, N should be larger than 2, and
therefore the range of allowed τ values is at most 0 < τ < n/2. A further restriction on
the range of τ is due to the limited semiclassical accuracy, which is of the order of a mean
spacing [22]. In other words, the semiclassical trace formula may have its poles away from
the unit circle, thus replacing the sharp δ functions in (5) by spikes with a finite width, of the
order of the mean spacing. Therefore, the regime τ > 1 is not expected to be accessible to the
semiclassical approximation, and thus the range of applicability reduces further to the domain
n < N . It is important to note at this point that the required order of operations (keeping n
fixed and taking N → ∞) is consistent with the correspondence principle and the rules of
quantum mechanics where the limit h̄ → 0 is taken at a fixed value of the classical parameters.

In the present work we shall study the Baker map, which will be introduced in the
next section. It is a simple dynamical system, for which various properties can be derived
analytically, yet it carries the full complexity of the action spectrum, and therefore it is
appropriate as a paradigm. In section 3 the spectrum of the actions will be discussed from
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Figure 1. The Baker map.

various points of view, and on the different relevant scales. The expression of the actions
in terms of the symbolic codes of the periodic orbits will play a central role. Mapping
the computation of the spectral density onto an Ising model enables us to introduce a few
approximations which enable the derivation of some properties of the action density (3.3).
The classical pair correlations are discussed in section 4. We study first the mth neighbour
distributions. We show numerically that as long as m is smaller than the action correlation
length 1/n measured in units of the mean action spacing, the mth neighbour distributions are
essentially Poissonian. Turning to the form factor, we discuss alternative smoothing methods
and relate them to the symbolic codes. We finally show that the classical correlations reproduce
the expected RMT behaviour as was conjectured in the general discussion presented above.
We conclude the paper by a summary, where the connection between the present and previous
works is discussed.

2. The Baker map

2.1. The mapping

The Baker map is one of the simplest examples of chaotic maps [17–19]. It is an area
preserving map of the unit square onto itself defined by

x ′ = 2x − [2x] y ′ = 1
2y + 1

2 [2x]. (20)

The stretching in the x direction and the squeezing in the y direction are responsible for
the hyperbolic character of the map, while the ‘cutting and putting on top’ gives the mixing
property. Figure 1 shows one iteration of the map.

The action of the map is easily translated to a Bernoulli shift: every phase space point is
presented in a binary basis,

x =
∞∑
i=1

ai2
−i = 0 · a1a2a3 . . .

y =
∞∑
i=1

bi2−i = 0 · b1b2b3 . . .

with ai, bi ∈ {0, 1}. The dynamics is given by shifting the binary point to the right when the
two fractions are put back to back

. . . b3b2b1 · a1a2a3 . . . −→ . . . b3b2b1a1 · a2a3 . . .

x = 0 · a1a2a3 . . . −→ x ′ = 0 · a2a3 . . .

y = 0 · b1b2b3 . . . −→ y ′ = 0 · a1b1b2b3 . . . .
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2.2. Periodic orbits and codes

An n-periodic point is represented as an infinite repetition of a finite binary string with n
entries ν = (ν1, ν2, . . . , νn), νi ∈ {0, 1}. The cyclic permutations of (ν1 . . . νn) represent the
periodic points which constitute the periodic orbit. The number of n-periodic orbits is ≈2n/n.
The phase space coordinates of an n-periodic point can be written in terms of the code

xi = 1

1 − 2−n

n∑
j=1

νi+j−12−j yi = 1

1 − 2−n

n∑
j=1

νi+j−12−n+j−1. (21)

As n → ∞ periodic points fill phase space densely and uniformly.
The symbolic dynamics introduced above is based on the partition of the unit square into

two equal rectangles along the line x = 1
2 . The sequence of binary symbols indicates the order

in which the orbit visits the rectangles. Alternative codes can be generated by partitioning the
unit square along the lines xj = j 1

2r , with r > 1 integer and 1 � j � 2r − 1. A symbolic
code consisting of the 2r symbols 0, 1, . . . , 2r − 1 indicates the order in which the periodic
orbit visits the rectangles. The translation of a binary sequence to the 2r code is done by
considering successive sequences of r binary symbols as integers in [0, 1, . . . , 2r − 1]. (For
example, the binary code {001110101} is translated to the 2r=3 code {137652524}.) Increasing
r the code becomes more informative, because it locates the rectangles with an accuracy 2−r

along the x-axis. However, this is achieved at a cost: not all sequences of symbols are allowed.
They are restricted by a Markovian grammar with a 2r × 2r connectivity matrix with only two
nonvanishing entries per row.

C
(r)
jj ′ =

{
1 for (j ′ − 2j) mod 2r ∈ {0, 1}
0 otherwise.

(22)

The refined codes will be used in the following.

2.3. Symmetries

The mapping possesses two discrete symmetries [17]. The first is a space reflection symmetry

R̂ : x −→ 1 − x and y −→ 1 − y.

Geometrically, it is a double reflection about both the y = 1 − x diagonal and the y = x

diagonal. It manifests itself on the code by R̂(νi) = 1 − νi . The second is time reversal

T̂ : x −→ y y −→ x and t −→ −t

where reversing the time means reversing the mapping. Geometrically, it is a reflection
about the y = x diagonal and its action on the code of a periodic orbit is T̂ (νi) = νn−i+1.
Figure 2 shows the action of the symmetry transformations: R̂, T̂ and R̂T̂ = T̂ R̂ on the code
ν = (0001011).

2.4. Generating function, action

The action s associated with a phase space point (x, y) is defined as the generating function
F1(x, x ′) of the mapping, with x ′ = x ′(x, y). Because of the fact that in the Baker map the x
dynamics is independent of y, one has to derive the action by first extracting the generating
function F2(x, y ′) from the conditions

∂F2(x, y ′)
∂x

= y
∂F2(x, y ′)

∂y ′ = x ′
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Figure 2. Symmetry related periodic orbits.

and get F2(x, y ′) = 2xy ′ − x[2x] − y ′[2x] + const. To obtain F1(x, x ′) a Legendre transform
is needed (see [25]),

F1(x, x ′) = F2(x, y ′) − x ′y ′ = −x[2x].

One should emphasize that F1(x, x ′) is not a generating function of the mapping. However
choosing F1(x, x ′) as the action is consistent with the action obtained from the semiclassical
approximation of the quantum Baker map [19, 25]. Adding to the action an integer valued
function I (x) does not affect any semiclassical calculation (see [3]). The choice I (x) = [2x]
renders the action invariant under the symmetries of the mapping. Inserting an overall minus
(a matter of convention) gives s(x, x ′) ≡ s(x) = (x − 1)[2x]. We use the symbol s to denote
the actions because the phase space area is ‖A‖ = 1, so the actions are properly normalized.
Applying the above to the ith periodic point (or segment) of a periodic orbit ν of length n,
yields s(xi, xi+1) ≡ s(xi) = (xi − 1)[2xi] = (xi − 1)νi . The total action of the periodic orbit
ν is the sum of its segment actions,

sn(ν) =
n∑

i=1

s(xi) =
n∑

i=1

(xi − 1)νi . (23)

The action thus defined is invariant under space reflection R̂, time reversal T̂ and the Baker
transformation B̂ which is only a cyclic permutation of (ν1 . . . νn), i.e.

sn(ν) = sn(R̂(ν)) = sn(T̂ (ν)) = sn(B̂(ν)). (24)

Since the periodic orbits ν, R̂(ν), T̂ (ν), R̂T̂ (ν) are not identical in general, one expects a
maximal symmetry degeneracy of 4.

The action can also be expressed in a matrix form [8, 20] (see also [9]) which will be
useful later. Writing 〈ν| = Vec(ν1 . . . νn) and |ν〉 = Vec(ν1....νn)

T then the action is

sn(ν) = 〈ν|Ô|ν〉 − 〈ν|ν〉 (25)

where Ô is an n × n cyclic matrix, with matrix elements

Oij = 1

2n − 1
2(i−j+n−1) mod n. (26)
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This expression of the actions clearly shows that their values are restricted to integer multiples
of 2−n. This is the minimum separation in the action spectrum.

The Baker map is uniformly hyperbolic. The stability eigenvalues of all the n-periodic
orbits are the same, namely λ± = 2±n, the corresponding eigenvectors are parallel to the
(x, y)-axes, and the Maslov indices are all null. These features bring a large degree of
simplification which is to be incorporated in the definition of the action density for the Baker
map.

3. The action density

The action density (9) for the Baker map takes the form

dcl(s; n) = 1

2
n
2 − 2− n

2

∑
ν

δ(s − s(ν)) (27)

where the summation extends over all the different vectors ν. Note that in this way of writing,
repetitions are properly weighted. Since the weights in (27) are all positive, it is convenient to
normalize the density to unit integral. We shall denote the normalized density by Pn(s), with∫
Pn(s) ds = 1 (the subscript cl is dropped since we shall deal exclusively with the classical

spectrum),

Pn(s) = 1

Nn

∑
a∈Pn

1

ra

δ(s − sa) (28)

where Pn stands for the set of distinct n-periodic orbits and ra is the repetition number. The
normalization factor Nn, the number of n-periodic orbits, tends to 2n

n
in the large n limit.

An alternative expression is obtained by lumping together all the orbits which have the same
action and the set P̃n consists of single representatives from each degeneracy set, and ga is the
corresponding degeneracy,

Pn(s) = 1

Nn

∑
a∈P̃n

ga

ra

δ(s − sa). (29)

As defined in (28), (29), Pn(s) is a distribution. For some purposes, it is advantageous to use
a smooth version obtained by convoluting (28), (29) with a narrow window function. The
resulting smooth function will also be denoted as Pn(s), and it is shown in figure 3 for n = 21.

The simplest (but wrong) estimate for the action density is obtained by assuming that the
segment actions s(xi) = (xi −1)νi (23) are independent random variables which are uniformly
distributed on the interval

[− 1
2 , 0
]
. This leads to a Gaussian distribution in the limit of large n,

which has the same mean as the action distribution but otherwise is quite different from it.
Figure 4 compares the distribution computed numerically for a random choice of segments
(n = 19), with the actual action distribution (periodic orbits).

We shall start the discussion of the action density by reviewing some general properties.
In the next subsection, we shall investigate the substructures in the spectrum, and show that it
is partitioned naturally into families which can be characterized in terms of symbolic codes.

3.1. General properties

The action distributions Pn(s) are characterized by various scales whose dependence on n will
be summarized below.

Degeneracy in the action spectrum is mainly due to the symmetries (24). As n increases,
a larger fraction of the orbits are not self-symmetric, and therefore the mean degeneracy is
〈g〉 = 4. Figure 5 shows the degeneracy distributions for n = 16, 17. One can see that for
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Figure 3. Spectrum of actions, n = 21.

Figure 4. The density of randomly generated actions for n = 19, compared with the true density.

these values of n the degeneracies 2 and 1 still appear with appreciable frequency, and higher
degeneracies whose origin is number theoretical are also possible.

The lowest scale is 2−n since the actions are integer multiples of this interval.
The largest scale is provided by the interval In which supports the action distribution. It

follows directly from (25) that the maximum value of sn is smax
n = 0 while the minimum is

given by the action associated with the periodic orbit ν = (010101 . . .):

smin
n = −

{ n
6 for n even
n
6

(
1 − 1

3n
2n+1
2n−1

)
for n odd.

(30)

Hence, to leading order In = n
6 . This interval accommodates Nn ≈ 2n

n
periodic orbits, which

are ≈4 times degenerate. It follows that the mean spacing is
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Figure 5. The distribution of degeneracies for n = 16, 17.

〈
s(n)〉 � 2

3

n2

2n
. (31)

This estimate reproduces very well the numerical simulations. The above result indicates that
not all the integer multiples of 2−n on the action line are populated. Rather, the gaps are of
order n2. They cannot be seen in figure 3, because the bin size used is too coarse.

To characterize the large scale features of the action distribution, we quote explicitly its
first three moments in the limit of large n (the proof of these relations is given in section 3.3
below):

〈sn〉 −→ −n

8

var(sn) −→ n

192
(32)

〈(sn − 〈sn〉)3〉 −→ n

768
.

To check the limiting action distribution, it is appropriate to examine its dependence on
the scaled action:

s∗ = s − 〈sn〉√
var(sn)

. (33)

Sano [8] has recently shown that the scaled action density becomes Gaussian in the limit of
large n. Our numerical computations confirm that

lim
n→∞

〈(sn − 〈sn〉)l〉
(l − 1)!!nl/2

= 1 for l even

lim
n→∞

〈(sn − 〈sn〉)l〉
nl/2

= 0 for l odd.

(34)

Figure 6 compares the scaled distributions for n = 30, 100, computed for the r = 5 level of
the Ising model of section 3.3. One can clearly see that the distribution for the larger n gets
more symmetric. The fact that the distribution of scaled actions tends to a Gaussian does not
imply that pair correlations do not exist.

3.2. Families of actions and symbolic codes

Symbolic codes are naturally associated with a partition of phase space (see e.g. [24]). The
actions, being functions of phase space points, are expressed in terms of the codes (25) and
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Figure 7. Distributions of actions according to p-families.

therefore their classification into families which share certain properties is conveniently carried
out in terms of their codes.

As was shown in section 2.2 the binary code {0, 1} is based on the partition of phase space
by a vertical line at x = 1

2 into the two rectangles which are associated with the codes 0 and 1.
Only the points of the trajectory which fall in the second rectangle (code 1) contribute to the
action, and the increment to the total action per point is xi − 1. Denote by p the number of
times the periodic orbit visits the second interval, or equivalently, the number of νi = 1 in the
code. The set of all the trajectories which have the same p will be referred to as a ‘p-family’.
The actions of trajectories within a p-family cluster in substructures which are illustrated in
figure 7 in terms of the densities Pn,p(s), for n = 23 and a few values of p. The Pn,p(s) are
narrower than Pn(s), and one can show that they are centred about − 1

2
p(n−p)

n−1 . Scaling to unit
variance and shifting to their mean s value (figure 8), the densities Pn,p(s) collapse to a single
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function which is very similar to the scaled total density. Thus, the families enable a study
of the spectrum of actions with a finer resolution, with an approximate scaling similarity of
their densities.

The partition of the actions into p-families is just the first level in a systematic procedure
which enables the sorting of the actions according to their codes. The higher the level, the
more refined are the resulting families. The higher level families still maintain the scaling
similarities, which was discussed for the p-families.

The rth level families, (with r < n) are obtained by a partition of phase space into 2r

identical rectangles of unit height, and with j−1
2r � x <

j

2r , for all 1 � j � 2r . The family
consists of all the n-periodic orbits which go through each of the 2r−1 rectangles in the rightmost
half of the unit square the same number of times. Given an n-periodic orbit, we denote by
p

(r)
l the number of times it goes through the lth rectangle with 1

2 + l−1
2r � x < 1

2 + l
2r and

1 � l � 2r−1. A family of the rth level is characterized by the set of 2r−1 numbers,

P(r) =
(
p

(r)
1 , p

(r)
2 , . . . , p

(r)

2r−1

)
. (35)

One can get the P code by direct inspection of the binary code ν. p
(r)
j is the number of

times the r digit string, beginning with 1 and terminating with j − 1 written in a binary basis,
occurs in ν, i.e

p
(r)

j (ν) ≡ #( 1

j−1 in binary︷ ︸︸ ︷
00 · · ·01 · · · · · · · · ·︸ ︷︷ ︸

r digits

) in ν. (36)

One can easily check that the p-families defined at the beginning of this section correspond to
r = 1, with p

(1)
1 ≡ p. The r and the r + 1 partitions are related by

p
(r)
j = p

(r+1)
2j + p

(r+1)
2j−1.

Also,

∀r :
2r−1∑
j=1

p
(r)
j = p

(1)
1 ≡ p.
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The mean action for a P(r) family can be written as

s(r)
n =

2r−1∑
j=1

p
(r)
j

(
−1

2
+

2j − 1

2r+1

)
= −p

2

(
1 +

1

2r

)
+

p

2r

∑2r−1

j=1 jp
(r)
j∑2r−1

j=1 p
(r)
j

. (37)

Actions which belong to the same family cluster about this mean value within an interval of
order

√
n

2r .
The partition into families breaks the R̂ symmetry in the sense that symmetry conjugate

pairs of periodic orbits occur in different families. This is clear from the observation that the
number of 1 in the two conjugate codes are p and n − p. For r � 3, periodic orbits which
are related by T̂ can be assigned to different families. (For example, the periodic orbits which
are represented by the binary codes (001011) and (001101) are T̂ conjugate but they appear
in the r = 4 families (01011000) and (01100100), respectively.) To avoid this problem, one
should partition the actions which correspond to the set P̃n, where only one representative of
each degeneracy class is included (29).

An alternative partitioning of the actions in families can be defined in the following way.
Given a binary code ν, let q1 be the number of 1 in ν, let q2 be the number of sequences {11}
in ν, and in general, qr is the number of sequences of r consecutive 1 in ν. (Clearly q1 = p.)
The rth level family consists of all the n-periodic orbits which have the same Q(r) code,

Q(r) = (q(r)

1 , q
(r)

2 , . . . , q(r)
r

)
. (38)

This partitioning has the advantage that T̂ -conjugate orbits are always in the same family,
(however, R̂-conjugate orbits are in different families). We found this partitioning more
convenient for numerical simulations. The two methods of partitioning, at the same r level,
have in common the same resolution 2−r .

The partition of the actions of n-periodic orbits into families provides a very useful tool
for the analysis of the spectral correlations, especially because the parameter r which is at our
disposal, determines the resolution at which we wish to interrogate the spectrum. Given r,
most pairs of actions at a distance less than 2−r belong to the same family, and hence, intra-
family investigations are sufficient for the study of smaller action differences. However, for
larger scales, all actions in a family can be lumped together, and the large range correlations
are expressed through the study of inter-family correlations. We shall take both approaches
when we discuss the two-point correlations in the action spectra.

3.3. An Ising model approach

In the present section, we shall introduce a method to investigate the action spectra on scales
which are larger than a given level of resolution. For this purpose, it is convenient to study the
Fourier transform of the action distribution, P̂ n(k),

P̂ n(k) = 1

2n

∑
{ν}

eiksn(ν) = 1

2n

∑
{ν}

exp


ik


 n∑

i,j

νiOijνj −
n∑
j

ν2
j




 (39)

where the sum is over all possible configurations of the code ν = (ν1, ν2, . . . , νn), νi ∈ {0, 1}.
The action is given explicitly by

s(νn) = 1

1 − 2−n

∑
i

[
1

2
ν2

i +
1

4
νiνi+1 +

1

8
νiνi+2 + · · ·

]
−
∑

i

ν2
i . (40)

Formally (39) is the partition sum of a one-dimensional Ising model on a circular lattice
with exponentially decreasing interactions and an imaginary temperature. It can be evaluated
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using the standard transfer matrix method. Using this method, we can approximate P̂ n(k) by
truncating the interaction at any desired range r, 1 � r � n − 1. Thus, r = 1 is the nearest
neighbour approximation, r = 2 is the next-to-nearest neighbour approximation etc. When
r = n − 1 we regain the full range of interactions. The original effective Hamiltonian is
invariant under space reflection R̂ and time reversal T̂ . The invariance under T̂ is due to the
cyclic property of Ô and hence, is maintained for any truncated version. This is not the case
however for the space reflection R̂ symmetry. In order to preserve R̂ invariance, one has to
rescale the strength of the term

∑
j ν2

j which was introduced for R̂ invariance of the full action
(23). For a given range r of the approximation, the action takes the form

sn,(r)(ν) = 1

1 − 2−n

r∑
ξ=0

n∑
i=1

1

2(ξ+1)
νiνi+ξ − γn(r)

n∑
i=1

ν2
i . (41)

The symmetry restoring coefficient γn(r) is calculated by demanding that for the rth order
approximation the action be R̂ symmetric, i.e. sn,(r)(ν) = sn,(r)(R̂(ν)), and is given by

γn(r) = 1

1 − 2−n

r∑
ξ=0

1

2(ξ+1)
= 1 − ( 1

2

)r+1

1 − ( 1
2

)n . (42)

One recovers γn(r) = 1 for the full range of interactions r = n − 1.
This completes the definition of the rth level approximants, and because of the exponential

decreasing strength of the interactions we can expect that any quantity computed at the rth
level will converge exponentially fast to its full range interaction value.

Note that for the rest of this section we omit the factor 1
1−2−n ≈ 1 which multiplies sn.

We express P̂ n(k) for a given range r as

P̂ (r)
n (k) = 1

2n
Tr{[T (r)(k)]n} (43)

where the transfer matrix T (r)(k) is given by

T (r)(k) =




1 1 0 · · · 0
0 0 1 1 0 · · · 0
...·

...·
0 0 · · · 0 1 1

β2r−1 β2r−2 0 · · · 0
0 0 β2r−3 β2r−4 0 · · · 0
...·

...·
0 0 · · · 0 β 1




β = e−i k

2r+1 . (44)

Since T depends on powers of β, Tr{[T (r)]n} is a polynomial in β with real coefficients Aj,

1

2n
Tr{[T (r)(k)]n} =

N(n,r)∑
j=0

Ajβ
j =

N(n,r)∑
j=0

Aj e−ik j

2r+1 (45)

where N(n, r) is the degree of the polynomial. Transforming back to Pn(s) yields

P (r)
n (s) =

N(n,r)∑
j=0

A
(r)
j δ

(
s +

j

2r+1

)
(46)
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and
N(n,r)∑
j=0

A
(r)
j = 1. (47)

The rth approximant to the action spectrum consists of N(n, r) equally spaced actions
sj = − j

2r+1 , each weighted by a normalized weight (or probability) A
(r)
j . The set {Aj }

contains, together with the spacing δs(n, r) ≡ 1
2r+1 , all the information about the statistical

properties of the spectrum at the resolution 1
2r+1 . Increasing the range r to r + 1 results in

approximately doubling the number of actions, in addition to distributing them on a lattice with
half the spacing. In the limit r → n−1 (full range interactions) the lattice spacing becomes 1

2n

(or 1
2n−1 taking into account the factor 1

1−2−n that was neglected). This observation enables
us to connect the present approach with the partitioning of the actions to families according
to their codes. The truncation of the interaction at the rth level is approximately equivalent
to replacing the actions of all the members of a family by their average value given by (37).
Thus, the coefficients 2nA

(r)
j approximate the sum of the cardinalities of all the families whose

average action is sj = − j

2r+1 .
The moments of the distribution are computed using

〈
sm
n,(r)

〉 = (−i)m
∂mP (r)

n (k)

∂km

∣∣∣∣
k=0

=
( −1

2r+1

)m N(n,r)∑
j=0

A
(r)
j jm. (48)

The two lowest level approximants can be solved analytically.
r = 1: the transfer matrix (44) for this ‘nearest neighbour interaction’ approximation is

T (r=1)(k) =
(

1 1
β 1

)
β = e−i k

4 . (49)

Its eigenvalues are λ± = 1 ± √
β which yield

P̂ (r=1)
n (k) = 1

2n
[(1 +

√
β)n + (1 −

√
β)n]

= 2

2n

n∑
m=0;even

(
n

m

)
e−ik m

8 (50)

and

P (r=1)
n (s) = 2

2n

(
n

−8s

)
(51)

with

s ∈
{

0,−1

4
,−2

4
,−3

4
, . . . ,−1

4

[n
2

]}
.

This distribution limits to a Gaussian distribution for large n. The mean and the variance are
given by

〈sn,(r=1)〉 = − n

16
var(sn,(r=1)) = n

256
.
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r = 2: the transfer matrix in this ‘next-to-nearest neighbour interaction’ approximation is

T (r=2)(k) =




1 1 0 0
0 0 1 1
β3 β2 0 0
0 0 β 1


 β = e−i k

8 . (52)

The eigenvalues of T (r=2) are

λ1± = 1
2 (1 − β ±

√

1) λ2± = 1

2 (1 + β ±
√


2)

with 
1 = 1 + 2β − 3β2; 
2 = 1 − 2β + 5β2. This gives

P̂ (r=2)
n (k) = 2

22n

n∑
m=0;even

n−m∑
j=0

m
2∑

u=0

m
2 −u∑
t=0

[(
n

m

)(
n − m

j

) (
m
2
u

) (
m
2 − u

t

)
Cjtu e−ik j+t+2u

8

]
(53)

with

Cjtu = 2t{3u(−1)j+u + 5u(−1)t}.
The action distribution is

P (r=2)
n (s) = 2

22n

n∑
m=0;even

n−m∑
j=0

m
2∑

u=0

[(
n

m

)(
n − m

j

) (
m
2
u

) (
m
2 − u

−8s − 2u − j

)
Cju(s)

]
(54)

with

Cju(s) = 2−8s−2u−j {3u(−1)j+u + 5u(−1)−8s−j }.
The action takes the values

s ∈
{

0,−1

8
,−2

8
,−3

8
, . . . ,−n

8

}

and the summation coefficients u, j,m must fulfil the conditions

2u + j � −8s � u + j + m/2

to keep the binomial coefficients well defined. The r = 2 distribution is not Gaussian, its
mean, variance and third moment can be computed by a straightforward but cumbersome
calculation:

〈sn,(r=2)〉 = − n

16

(
1 +

1

2

)
var(sn,(r=2)) = n

256

(
1 +

1

4

)

〈(sn,(r=2) − 〈sn,(r=2)〉)3〉 = 3n

4096
.

We were unable to compute analytically the action distributions at higher levels, since
this involves finding the eigenvalues of the 2r -dimensional transfer matrices. However, the
computation can be performed using computer codes which perform algebraic manipulations.
For any r and β one can compute Tr{[T (r)(k)]n} by raising T (r) to the power n and taking
the trace. Using Newton’s identities, one can compute the coefficients of the characteristic
polynomial of T (r) from the traces of its lower powers, Tr{[T (r)(k)]l}, l = 1, . . . , 2r . The
traces of higher powers can then be expressed recursively in terms of these coefficients. This
way we were able to perform computations up to the level r = 9, without reaching the limits
of our computer resources.

At the beginning of the section, we argued that due to the exponential decrease of the
interactions, computing any quantity at a given level r converges exponentially fast to the full
r = n − 1 calculation. Thus, it can be expected that any quantity of interest will be given by
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a geometric series in 2−r . Knowing the first two levels (r = 1, 2) may allow us to extrapolate
and obtain the leading terms for r = n− 1. Applying this strategy for the first three moments,
we obtained the expressions

〈sn,(r)〉 = −n

8

(
1 − 1

2r

)
−→ −n

8
(55)

var(sn,(r)) = n

192

(
1 − 1

4r

)
−→ n

192
(56)

〈(sn,(r) − 〈sn,(r)〉)3〉 = n

768

(
1 − 1 + 3r

4r

)
−→ n

768
. (57)

These expressions were checked by comparing them to the computer aided, large r calculations.
This computation indicates that the truncation error introduced at the rth level is of order 2−r .

We shall return to the results of the Ising model when we discuss the pair correlations in
the action spectrum which is the subject of the next section.

4. Pair correlations in the action spectrum

So far we have discussed the distribution of actions. Now we turn to study their pair
correlations, which is the main issue of the present work. We examine whether the
classical action spectrum exhibits correlations, and whether these correlations conform with
the semiclassical theory which was presented in section 1.

There are two distinct length scales in any discrete and finite spectrum: the width or
support of the distribution on the largest scale and the nearest neighbour spacing on the
smallest scale. The fact that the support is finite induces a trivial correlation: the probability
of finding two points separated by a distance larger than the range of the support is zero. The
nearest neighbour scale is of great interest, in particular for ‘rigid’ spectra such as the quantum
spectra of classically chaotic systems. They exhibit level repulsion as predicted by RMT, i.e.
the probability of finding two nearest neighbours at distance δ vanishes as δ → 0. We have
already hinted in section 1 that the pair correlations in the action spectrum are expected on a
scale which is much larger than the mean spacing.

We shall perform the analysis of pair correlations in several steps. First, we shall examine
the correlations on the scale of the mean level spacing. We shall show that the mth nearest
neighbour spacing distributions are consistent with the corresponding Poisson distributions,
as long as m is smaller than the correlation length measured in units of the mean spacing. We
shall then study the form factor of the pair correlation function, and compute it in various
ways. The main result of this investigation is that the correlations exist, and their scaling with
n agrees with the semiclassical expectations.

4.1. The mth neighbour spacing distributions

The mth neighbour spacing distribution p(n)(σ ; m) is a straightforward generalization of the
widely used nearest neighbour spacing distribution. To define this distribution, the action
spectrum is ordered so that si < si+1, degeneracy sets are represented by a single value and
the spectrum is normalized by the nearest neighbour spacings

〈
s(n)〉 � 2

3

n2

2n
. (58)

Then p(n)(σ ; m) is the probability that si+m−si

〈
s(n)〉 takes the value σ .
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Figure 9. The first, second and third neighbour distributions (n = 19).

As a reference spectrum, we generated numerically a Poissonian spectrum. It is randomly
chosen from a Gaussian probability density which has the same mean, variance and degeneracy
structure as the action spectrum for the n value of interest. In the upper frame of figure 9 the
nearest neighbour distribution, p(n)(σ ; m = 1), for n = 19 is plotted together with the random
(Poissonian) nearest neighbour distribution. The similarity between the two distributions,
which persists over six orders of magnitude, provides strong evidence in favour of the claim
that on the mean spacing scale, the action spectrum is statistically random.

This finding is further corroborated in the lower frames of figure 9 where the spacing
distributions for m = 2, 3 are compared with the corresponding random distributions.

To go even further in m, we studied numerically the summed distributions

p
(n)
M (σ ) =

M∑
m=1

p(n)(σ ; m) (59)

which approximate the two point correlation function R2;n(σ ) = p
(n)
∞ (σ ) in the range

0 < σ < M .
Figure 10 shows p

(n)
M (σ ) for M = 20, 50, 100, n = 19 together with the corresponding

random distributions. These values M should be compared with the correlation length expected
to be of order

σcorr ≈ 1/n

〈
s(n)〉 = 3
2n−1

n3
(≈90 for n = 19). (60)

This numerical investigation clearly demonstrates that the systematic deviation between
the random and the actual distributions increases as M approaches the correlation length.

4.2. The classical spectral form factor

The purpose of the present section is to study the form factor of the classical action spectrum
(13). We start by investigating alternative methods for averaging the form factor, the need
for which and the difficulties involved were discussed at length in section 1. We shall study
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Figure 10. Integrated distributions with M = 20, 50, 100, n = 19.

the function Kn(k) (17), and in particular test whether the action spectrum of the Baker map
satisfies either of the equivalent relations,

Kn(k) ≈ k

2πn
KRMT

(
2πn

k

)
or τKn

(
2πn

τ

)
≈ KRMT (τ ) . (61)

Since the Baker map is invariant under time reversal, the appropriate RMT expression is that
for the circular orthogonal ensemble (COE) KCOE(2τ ), where the factor 2 in the argument is
due to the invariance of the Baker map under the R̂ symmetry. The explicit expression for
KCOE(τ ) is given by

KCOE(τ ) =
{

2τ − τ ln(1 + 2τ ) for τ < 1
2 − τ ln

(
2τ+1
2τ−1

)
for τ > 1.

(62)

Before applying any averaging, the function τKn

(
2πn
τ

)
displays strong fluctuations which

are shown in figure 11 for n = 15 together with the expected COE result. The large fluctuations
make the comparison quite meaningless, and the figure is shown to emphasize the need
for averaging.

Using the running average,

f̄ (x) = 1

x

∫ x

0
f (y) dy (63)

the large fluctuations are reduced, and the curve labelled ‘periodic orbits’ in figure 12 is the
running average obtained by computing the form factor from the set of n = 17 periodic
orbits. The agreement with the corresponding COE curve persists up to τ ≈ 0.5. The line
marked ‘diag’ is the curve obtained by assuming that the actions are not correlated, and it
agrees very well with the line marked as ‘rand’ which was computed for the random set
of actions (see section 4.1). The difference between the data and the random curves is a
clear indication of the presence of correlations, whose similarity to the predicted COE result
goes beyond the leading ‘diagonal’ approximation. The running average procedure is not
satisfactory, because it is practical only for low values of n. As n increases, the number
of periodic orbits proliferates exponentially, and the fluctuations in the form factor grow
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Figure 12. A running average (63) of τKn

( 2πn
τ

)
(n = 17).

as rapidly. Moreover, this method does not help to unravel the dynamical origin of the
correlations.

A systematic averaging procedure, which can be applied for any n, uses the concept of
families which was introduced in section 3.2. The spectrum of actions of n-periodic orbits is
partitioned to families at the rth level with labels P(r) (see (35)). As long as r is sufficiently
small such that 2−r is larger than the correlation length, only intra-family correlations are
important. The form factor can be approximated by an incoherent sum over the form factors
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Figure 13. P(r) family averaged τKn

( 2πn
τ

)
for r = 1, 2, 3, n = 15.

which pertain separately to orbits within one family:

K(r)
n (k) = 1

Nn

∑
P(r)

∣∣∣∣∣
∑

a∈P(r)

eiks(n)
a

∣∣∣∣∣
2

. (64)

Each family of actions is supported on an interval of size which decreases with r as 2−r . Hence
from the requirement k
s > 2π we deduce N > 2r , and the range of values of τ which can
be described by this method is bounded from above by ≈ n

2r . Thus by increasing r, we gain a
higher level of smoothing, but we lose on the range of τ where this method can be used.

The resulting form factors for n = 15 and r = 1, 2, 3 are shown in figure 13. It shows
that the smoothing gets more effective as r increases, without appreciable loss of correlations
in the interval 0 < τ < 1. This is consistent with the expectation that the spectral correlation
length is 1

15 , which is smaller than the family separation of ≈2−r for the values r = 1, 2, 3.
A closer comparison of the r = 2 and r = 3 curves near τ = 1 shows that the deviations
from the RMT prediction start earlier for the r = 3 data. To investigate this trend further,
we use the Q(r) partitioning (38) which is more convenient from the numerical point of view.
It allows us to extend the level further, and the data for r = 4, 5 are shown in figure 14.
Since now the family range is smaller than 1

n
, the correlations can be studied only on a lower

range of τ values. This, and similar other numerical investigations provide strong evidence
in support of the 1

n
dependence of the correlation length, in agreement with the semiclassical

expectations.
As was commented previously, the partition into families breaks pairs of R̂-conjugate

orbits. Hence, the RMT expression which is used in figures 13 and 14 is KCOE(τ ) and not
KCOE(2τ ) which is used for the comparison with the full dataset.

The Ising model approach (3.3) offers a complementary view of the form factor. As was
explained in (3.3), the truncation at the rth level does not allow us to distinguish between
actions which are within 2−r , and counts them as if they are degenerate. Thus, the only way
in which we can get spectral information on the scale of 1

n
in this model is to use r such
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for r = 4, 5, n = 15.
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, from the Ising model with r = 9, averaged over 17 � n � 22.

that 1
n

� 2−r . The spectral correlations are now studied as correlations between degeneracy
groups, rather than within a group. Figure 15 shows the average of a few form factors,
corresponding to values of n from n = 17 to n = 22, given by the model with r = 9 which
satisfies the criterion above. The average over n reduces the fluctuations of the form factor so
it is possible to compare it directly to the RMT.
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The fact that the action spectrum is resolved with an accuracy of 2−r sets a lower limit to
the values of τ which are accessible by the model, which is τmin ≈ n

2r . This is why the low τ

values in figure 15 are absent.

5. Discussion

The semiclassical predictions which were presented in section 1 were checked in detail and
were found to be well satisfied for the Baker map. They consist of the following main points:

• The action spectrum shows pair correlations which are universal and consistent with the
predictions of the semiclassical theory and RMT.

• The correlation length is of order 1
n

which exceeds the mean spacing by a factor which
grows exponentially with n. The spectrum of actions is Poissonian on smaller scales.

• The correlations can be associated with families of periodic orbits which have a similar
dynamical structure that can be associated systematically with their symbolic codes.

Various aspects of these points were confirmed for other systems [2, 3, 6, 7, 10]. The
results of [7, 10] are unique, because the phase space of the mapping considered is four
dimensional, and the semiclassical theory predicts that the action correlation range scales with
n as 1

n2 . This scaling was confirmed.
Richter and Sieber [12] pointed out the pairs of periodic orbits which provide the

correlations that are necessary for the second-order term in the small τ expansion of the
form factor. These orbits spend about half of their time quite close to each other, and the rest
of the time they go along the time-reversed part of their partner’s orbit. This way both orbits
visit the same parts of phase space, but the order in which they do it is different. Similar pairs
were also proved to provide the answer in the case of quantum graphs [14]. The families which
we have identified here as storing the correlations between the actions are of the same nature,
but of a more general character. They do not rely exclusively on pairs conjugated partially
by time reversal (as explained above), but by the requirement that the correlated members
spend the same amount of time in the same subdomains of phase space. This definition of
families is also consistent with the work of [7], where the periodic orbits in a family follow
the same segments of phase space which were related to each other by symmetries other than
time reversal. Because of the strong link between phase space partition and symbolic codes,
it was possible to characterize the families by a common code. Unfortunately, even with this
tool, we were not able to derive the classical correlation function using classical arguments
only. This remains an enigma which should be addressed. At the same time, one should also
be able to show that the spectrum of actions on smaller scales is Poissonian. This is assumed,
but not discussed, in [12, 14].

In the present paper, we focussed our attention on discrete maps and their periodic orbits.
However, most systems of interest are Hamiltonian flows, where the time is a continuous
variable, and the quantum spectrum is on the real line and not on the unit circle. This does
not pose any essential problem, since several quantization techniques make use of an auxiliary
map to derive the quantum energies, and it was shown that for chaotic systems, the spectral
statistics of the energies and of the eigenphases of the auxiliary map are the same in the
semiclassical limit [5, 26, 27]. A more direct approach was recently introduced in [28], where
the quantization of the Hamiltonian flow is carried out in terms of a quantum map which
evolves the system along a sequence of equally spaced times tn = n
t . The semiclassical
expression for the spectral form factor is analogous to (7), and the periodic orbits have periods
which are integer multiples of 
t and their energies are restricted to a well-defined energy
interval.
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Integrable dynamics lead to Poissonian spectra [29]. In the present context, this implies
that the actions are Poissonian also [7]. Recently, it was shown in [30] that in order to account
for finer spectral correlations which are due to the spectrum being pure point, finer correlations
must exist, but this discussion exceeds the scope of the present paper.
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